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Abstract 
Theoretical and experimental substantiation of application of method of permanent expansion for evaluation of 
static strength margin of steel cylinders have been presented. Common deformation curve and deformation 
plasticity theories are used. A possibility is provided for justified designation of a maximum allowable coefficient 
of permanent expansion used at periodic inspection of the cylinders.  
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1. General provisions  
 
The publication makes a hypothesis on common dependence between the coefficients of 
permanent expansion and coefficient of static strength margin for single-type cylinders. 
Theoretical and experimental arguments are provided in defense of it.  
 
Hypothesis: Thin-wall steel cylinders, made of one steel grade and on one technology, 
independent on differences in volume, weight, wall thickness, outside diameter and length, will 
have the same dependence between current coefficient of static strength margin and coefficient 
of permanent expansion.  
Notes: The cylinders shall have no defects detected by non-destructive testing methods. It 
means that if a cylinder is slowly loaded with rising internal pressure up to a limit state, i.e. its 
failure will take place due to exceeding a bearing capacity of metal. The dependence of current 
coefficient of static strength margin on coefficient of permanent expansion can be obtained 
experimentally as well as theoretically.  
 
There is a certain spread on geometry parameters and mechanical properties in the process of 
manufacture of one-type cylinders. Some of the indices are regulated by the tolerances, other 
no. Usually only one maximum allowable limit is set. Melts of the same steel effect the 
considerable spread of the mechanical properties, apart of different emergency steels. As an 
example Figure 1 presents the results of the mechanical tensile tests of oxygen 40 l cylinders 
made on GOST 949-73 [1]. The maximum allowable values of yield point ( YP ) and ultimate 
strength ( U ) made 373 and 638 MPa, respectively. Conventional sign with a line over 
indicates that there are data on stress-strain diagram. Figure 1a shows the data during 
manufacture at Iron and Steel Illich Works for 2001-2008. The cylinder samples cut in axial 
direction from a witness shell were used. The sampling was made without repeated heat 
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treatments. The tests were carried out on two samples of each batch, in total 447 batches. The 
batch contained not more than 400 cylinders [2]. The cylinders were manufactured mainly of 
Ds steel grade (TU 14-157-15). Figure 1b presents the actual deformation diagrams (see 
formula (4) below), obtained on the samples cut out in circular direction from 2 investigated 
cylinders made of Ds steel grade, and for a long time being in operation. The samples were cut 
out of non-deformed part under shoes after cylinders failure due to inner burst pressure. The 
diagrams show the information before deformation corresponding to ultimate strength, i.e. start 
of neck formation. A stress relationship is virtually constant in the area of insignificant plastic 
deformations.  
 

 

Figure 1. Mechanical properties of oxygen 40 liters cylinders:  
a – in manufacture; b – actual diagrams of cylinders I and II deformation, plotted on tensile diagrams using 

dependencies (4),  
P – proportionality limit PL  see GOST 1497-84 [3]; Y – conventional yield strength 02 ;  

C – value corresponding to cylinder limit state; U – ultimate strength U . P, Y, U values of actual diagram of 
deformation are obtained from corresponding values on stress-strain diagram using dependencies (4).  

 
Figure 1a shows sufficiently large spread of yield strength and ultimate strength in production 
of cylinder of one type at one plant. It is known that mechanical properties have normal 
distribution, therefore, using additional analysis it is possible to talk about ultimate strength. 
The yield strength is also far from this law. Virtually, even using Figure 1a it is possible to 
conclude that data on yield point in the area of its minimum allowable values on GOST were 
collected not very objectively. Besides, the tendency is traced that the higher the yield strength 
the higher ultimate strength is. As for strength, for example, a cylinder with larger diameter and 
smaller wall thickness, having higher mechanical properties, may be stronger, i.e. keep higher 
pressure. A process of cylinder operation can also make changes in strength, for example 
reducing wall thickness due to corrosion, etc. (following the European requirements, for 
example, corrosion is not allowed).  
 
In manufacture and at periodic inspections of the cylinders the hydraulic pressure tests are 
carried out using internal test pressure ( РH ). It depending on various requirements 1.25; 1.5 
or 5/3 times exceeds working pressure ( РW ). A series of reference documents (see, for 
example, [4, 5, 6, 7]) are sued for determination of volume change and coefficient of permanent 
expansion in process of such tests:  
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 К W WPE PE TE  , (1) 
 
where WTE  – total expansion of cylinder volume being under test pressure, WPE  – 
permanent expansion – residual variation of cylinder volume after test pressure relieve to zero.  
 
Changes of volume is mainly determined with help of «water jacket» method. A cylinder is 
placed in a close vessel with liquid having coming of it (vessel) graduated burette. At pressure 
loading the cylinder expandes and displaces liquid into a burette. The maximum allowable value 
КPE  is also set at 0.1 level for steel cylinders and 0.05 for composite cylinders. In Russia , for 
example, all cylinders are for 0.05.  
 
In the USA, for instance, an elastic expansion is also determined in addition to the coefficient 
of permanent expansion following the recommendations of Compressed Gas Association:  
 
 W W WEE TE PE    . (2) 
 
Its maximum-allowable pressure is set based on limitation of averaged stresses in a cylinder 
wall, see [8]. An explanation of given formulae and experimental dependencies can be found 
in materials [9]. The elastic change of volume is related with geometry characteristics of the 
specific cylinder, permanent one is connected with value of plastic deformations, if they took 
place in cylinder wall at test pressure. The coefficient of permanent expansion is an integral 
characteristic and describes a level of these plastic deformations. It equals zero ( 0WPE  ) in 
elastic area. The next information will show that it is the most sensitive to initial stages of plastic 
deformation, and then demonstrates weak reaction to further deformation. It can not be more 
than 1.  
 
Real coefficient of cylinder static strength margin ( nВ ) – the burst ratio, is determined as the 
maximum pressure realized in cylinder ( РВ ) before its fracture referred to working one, and 
its maximum-allowable value is also regulated. For large spectrum of cylinders this coefficient 
on European and American requirements equals 2.4 and for post-Soviet area it is 2.6. If the 
coefficient is reduced by some reasons the period of further operation is limited. Real strength 
of the cylinder can only be determined by means of its fracture. Due to some different reasons 
nВ  coefficient will have some spread even for cylinders belonging to one batch. It is clear that 
in the trial tests nВ  is not lower than Р РH W  relationship, but it is impossible to say what it 
is in fact for each specific cylinder. Using the method of volumetric expansion it can be assumed 
that the higher КPE  at that the closer the limit state is, i.e. РВ  and , respectively, nВ  will be 
lower.  
 
The similar value of the maximum allowable coefficient is designated for different types of the 
cylinders independent on Р РH W  relationship, and the minimum allowable coefficient of 
static strength margin. At that in the most cases the data of previous checks are not considered. 
More detailed information and references can be found in paper [10].  
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2. Theoretical backgrounds  
 
Detailed workup of a theory stated below is considered in [11]. It also provides numerous 
experimental data, including extensive description and results of testing of full-scale sample 
used below. This publication states only main provisions.  
 
For description of large deformations it is more reasonable to use a concept of logarithmic strain 
( ), sometimes it is called actual and it can be expressed through current ( l ) and initial ( lo ) 
linear dimensions or through common deformation ( e l lo ) in the following way:  

  ln ln ln ln ln 1
l l l ldl l od l l eol l lo ol lo o

 


         . (3) 

In this case l l lo    is the finite increment.  
 
Mathematic operation of the logarithmic strain is more reasonable due to elimination of 
additional members, which are inconvenient in transformations. Besides, they in contrast to 
common ones have an additively property. At small deformation the common and logarithmic 
strains are virtually indistinguishable.  
 
A tension diagram is obtained at mechanical uniaxial tensile strength test: e l lo  is the 
common longitudinal deformation, F Ao   is the stress, as a tensile force F , effecting the 
sample referred to the initial area of its working cross section Ao . This diagram will be re-
plotted in actual strain diagram ,i i   using following dependencies:  

    ln 1 , 1e ei i        . (4) 
 
Then it can be used at multiaxial stressed state, but only till neck forming moment. Stress 
intensity ( i ) in this case is already with considered dimension change. It should be noted that 
at such plotting of actual strain diagram we eliminate elastic deformations of volume taken by 
material, i.e. condition of incompressibility is accepted, Poisson’s coefficient   equals 0.5. A 
theorem of elastic unloading is kept in force. The actual strain diagram ,i i   is the material 
property and does not depend on type of stressed state. In general form, at complex stress-strain 
state Hook’s law for elastic state has the following form: Ei i  . It should be noted that further 
the stresses are determined not by initial, but on actual, current dimensions, see, for example, 
formula (6). Hereinafter only such stresses and logarithmic strains will be used.  
 
The calculation is carried out on thin-wall theory, i.e. wall thickness is small in comparison 
with diameter. Denoting the initial values of radius of a middle surface, wall thickness and 
cylinder length through , ,r s lo o o , the current ones varying in the process of deformation under 
loading can be expressed in accordance with formula (3) in the following way:  

 tr r eo


 , ss s eo


 , zl l eo


 , (5) 
where , ,t s z    are the deformations of cylinder in circumferential, on wall thickness and 
axial directions (main deformations).  
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Changes of dimensions in the elastic area are insignificant, therefore, they are usually neglected, 
whereas in the field of plastic deformations the changes are considerable and they should not 
be neglected.  
 
Inner pressure acting on the bottoms of cylinders creates an axial force and, respectively, axial 
stresses. The radial stresses in the cylinder are considered being equal 0, i.e. plane stressed state 
is taken. Cylindrical part located in plastic field, as it will be shown below, based on 
incompressibility assumption, will be under conditions of plane deformation state, i.e. axial 
deformations equal zero. Studying deformation of the thin-wall steel cylinder out of elasticity 
limits several plasticity theories can be used. For the cylinder under effect of inner pressure, 
independent on selected plasticity theory, the main stresses in the cylinder wall, namely 
circumferential, axial and radial ones, are expressed in the following way:  
 
 , 2, 0Pr st z t r      . (6) 
 
The following is received when determining the stress intensity as an equivalent stress on 
maximum-distortion-energy theory, namely hypothesis of specific potential energy of shape 
change, and substituting the stresses from (6):  
 

      2 221 3 32 2
2 22

Pr
i t z z t t t z z t s

                  . (7) 

 
In plastic region as well as in elastic the stress intensity is proportional to its constituents and 
these constituents between themselves are also proportional and in turn proportional to pressure.  
 
Also it should be noted that due to geometry and power symmetry, the tangential stresses on 
main areas, which are parallel and normal to the axis, equal zero. The main axes of stressed 
state keep their direction in loading of cylinder with inner pressure. The stresses are 
proportional between themselves and rise proportionally to pressure. Such a type of 
deformation is called common deformation, and loading is the common loading. In the case of 
common loading, the intensity of increment of plastic deformations equals increment of 
intensity of plastic deformations. In such a case when describing large plastic deformations it 
is reasonable to use deformation theory of plasticity (theory of small elasto-plastic 
deformations). The process of loading at small as well as at large deformations is simple. The 
linear deformations corresponding to main stresses are also main ones. For the areas 
significantly distant from the bottom, the radial displacements do not depend on location along 
the axis. Therefore, it is possible to study a part of cylinder, cut out by two sections normal to 
cylinder axis, and compile the equations of shell element equilibrium selected from this part by 
toe radial sections making between themselves some angle. It is true for elastic as well as plastic 
stage of loading. The deformations being determined on different theories of ductility can vary. 
Description of plastic deformations of the cylinder, for example using plastic flow theory (flow 
theory), provides the same results as based on deformation plasticity theory. The flow theory is 
used in the cases when the stresses are not proportional between themselves at loading, i.e. 
loading is not simple [12]. The intensity of increment of plastic deformations in general case 
does not equal the intensity increment of plastic deformations. Equality is a special case and it 
shall be proved.  
In construction of deformation theory of plasticity as well as theory of plastic flow the equations 
still contain an elasticity module and Poisson’s ratio in the elastic region. They allow getting 
the elastic solutions using the dependencies obtained for plastic state (general solutions) at 
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insignificant deformations. At plastic deformations the elastic constituent in the equations is 
small. The actual Poisson’s ratio in the field of plastic deformation tends to 0.5 [13]. Under 
loading conditions there are only elasticity equations.  
 
Breaking down the main deformations through the stresses [12] and expressing the stresses 
through their intensity, the main deformations for the cylinder are obtained:  
 

 1 2 3
2 3

i
t E ES

 
    
 

, 
3 1 2 1
2

i
s E ES

 
    
 

, 
2 1

23
i

z E


    

 
, (8) 

 
where ES  being the elasticity secant modulus on actual deformation diagram is the variable 
value.  
 
It can be seen from this that the axial deformations are always elastic and the deformations on 
wall thickness are negative. It should be noted if the expression contains the elasticity modulus 
( E ) or the same 0.5  , than the secant modulus should not be described as i i  , since in 
contrast to stress intensity, the intensities of deformations are different for the cylinder and on 
actual deformation diagram. Assuming 0.5   for the cylinder, they completely match, only 
in this case it is possible to accept ES i i   and perform further transformations.  
 
Describing the deformation intensity by definition using the dependencies (8) for cylinder we 
get:  

      2 2 22 2 1 3
3 3

i
i t z z s s t E ES

       
          
 

. (9) 

 
Substituting in formulas (8, 9) ES  for E , the dependence of calculation of elastic deformation 
is obtained. The dependencies are significantly simplified, if suppose that the material is 

incompressible, i.e. assume 0.5  . It follows form this that 2
3

i
i tES


   , s t   and 

0z  . For this case it is possible to show that r s r so o    and i i t t      . In general, if it is 
taken that 0.5   the solutions in the plastic region are more approached to reality, but at small 
deformations these solutions do not automatically transfer into elastic solutions, rather they 
transfer to such elastic solutions, where Poisson’s ratio is also equals 0.5.  
 
In the plastic region in contrast to elastic one, the deformation intensity is not proportional to 
stress intensity. Also the deformation intensity is not proportional to each of the linear 
deformations. At 0.5   the deformation intensity becomes proportional to linear 
deformations except for axial ones, which in this case equal zero. And it is still not proportional 
to stress intensity.  
 
Since logarithmic deformations in contrast to common ones have the additivity property, then 
after release of internal pressure resulting in plastic deformations, the residual deformations can 
be expressed as a difference between complete ( i ) and elastic ( ie ) ones. Naturally that 
release is elastic:  
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 2 12 1 3 1 1

3 3
i i

ires i ie iE E E E ES S

     
                           

. (10) 

It is clear that in this case i  value corresponds to stress intensity value during loading. It can 
be seen that this expression does not depend on Poisson’s ratio and completely match with 
Odqvist’s parameter, i.e. residual deformations on actual deformation diagram. In other words 
in this case the residual deformations in the cylinder already match with the residual 
deformations on the actual deformation diagram. The main deformations can be treated in the 

similar way. It follows from this that 3
2tres ires  , sres tres  , 0zres   as well as that 

r s r sres res o o   . These data indicate that the residual deformations do not depend on Poisson’s 
ratio.  
 
For the case of simple loading the deformation intensity can be described as sum of elastic and 
plastic constituents i ie ip    , where ip ires  .The same will be true for increments 

d d di ie ip    . Under ie  can be treated as a value of elastic relief in each point. The larger 

the deformation, the more the stress is and the higher the value of elastic relief will be. It is 
interesting to note that the plastic constituent of deformations as well as its increment does not 
depend on Poisson’s ratio.  
 
Using the current and initial dimensions, let’s describe a change of cylinder volume as change 
of volume acquired by cylinder shell:  

2 22 2 2 1 1t z t zW r l r l r l e W eo o o o o
   

  
    

         
   

. Describing the main deformations 

the general solution is obtained:  

 

2 4 3
2 4 3exp 1 exp 3 12 1 33

E Ei SW W Wo o iE ES
E ES


   

                                     

. (11) 

In this case 2W r lo o o  is the initial volume, however, it can be determined directly, for 
example, as internal, and i  is determined by formula (9), and not on actual deformation 
diagram. The corresponding is obtained in the elastic region:  

   
 

5 4 3 5 4
exp 1 exp 1

2 13
i iW W W We o oE

   


     
                   

, and at 0.5   it follows 

from the general solution   3
exp 1 exp 3 1iW W Wo o iES




  
      

    
.  

It can be seen from general solution (11) that it is impossible to expand the complete change of 
volume under load for elastic ( We ), releasing after relief, and plastic ( W р ) components. 

Conventionally supposing that W W We р   , plastic change of volume can be presented 
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as W W Wр e   . Naturally, that rise of plastic deformations We , the same as W  

provokes increase of W р , but in less degree than the last. The plastic constituent of volume 

change is related with the residual deformations.  W f i   dependence is close to linear one. 

It can be shown that expression for W р  does not virtually depend on Poisson’s ratio. But it 

should be noted that the difference values of W  and We  at 0.5   and 0.5   can have 
significant variation between themselves. As for the residual deformations and their intensity, 
they demonstrate complete matching and constituents of the difference at 0.5   and 0.5   
can also be considerably different between themselves.  
 
Determination of residual change of cylinder volume can be done easier. Let’s write it as change 
of volume of cylinder shell using residual and initial dimensions, see above. Since we know the 
residual circumferential deformations, which can also be expressed through residual 
deformation intensity, at that we know that the axial residual stresses equal zero, the next is 
obtained:  

    1 1exp 3 1 exp 3 1W W Wres o ires o i E ES
 

   
              

. (12) 

 
Wres  value is very close to W р  and found as difference. It can be assumed that 

W W Wres e   . Altogether for determination of volume change several dependencies can 
be proposed, naturally the results will be somewhat different, but the general principle is not 
violated at that.  
 
Having the information about volume change, for example at testing in water jacket (WJ), it is 
possible to determine circular deformations and deformation intensity. Adopting 0.5  , thus 
eliminating secant modulus, the next is obtained:  

 2 1 ln 1
3 3

W
i t Wo
 

           
. (13) 

Substituting complete and residual volumetric expansions obtained in tests with WJ in formula 
(13) instead of W , we get a complete and residual deformation intensity.  
 
Knowing the circular deformations and deformations on wall thickness, it is possible to 
determine the pressure corresponding to current loaded state. Since (using formula (5)):  

 3 1 2exp exp 3
3

tr e r rr o o i o
is s E E ss o S os eo


  

           
, then  

 
 

2 2 2
3 3 exp 33 1 23 exp

3

s s si i o i oP
r ri o iro E ES

  

 
  

        

. (14) 

Let’s remind that deformation intensity in this case is taken for cylinder, it somewhat different 
from deformation intensity on the actual deformation diagram. At 0.5  , the deformation 
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intensity is taken already on actual deformation diagram. So, in this case the pressure is 
somewhat lower. The formula for pressure can be reduced to stresses and residual deformations. 
It can be seen from (14) that connection of pressure with actual deformation diagram is 
performed through geometry parameters of the cylinder ,r so o . The rest considered here values 
can be connected indirectly without applying geometry parameters. ,W P  dependence can be 
made using ,i i   diagram and geometry parameters of the cylinder.  
 
Let’s consider the condition of buckling at plastic deformation. Expression 2 3P s ri  is 
differentiated, see formula (14). Since the current values of radius and wall thickness are not 

constant, we have 2
23

sd ds sdri i idP
r r r

   
   

 
. It is clear that deformation provokes 

decrease of wall thickness ( 0ds  ), rise of radius of middle surface ( 0dr  ), and regardless 
the fact that increment of stress intensity is more than zero, but increase of plastic deformations 
decrease these increments. Therefore, dP  values becomes lower and lower. As it is shown in 
[13], when the pressure stops to increase at processing medium forcing, i.e. dP  becomes equal 
0, then the shell with bottoms lose the process of stable plastic deformation, forming local wall 
thinning, and it failures due to pressure loss. However, theoretically, if this does not take place, 
then further uniform deformation will provoke pressure drop. It follows from expression 

0dP   that expression in brackets shall equal zero. Set to zero, preliminary multiplying by r  

and rearranging, we find: dr dsd i i r s
     

 
. In the brackets there are the increments of circular 

deformations and deformations on wall thickness, i.e.  d d di i t s     . At 0.5  , we get 

3 2d d ds t i    . It follows form this that   2 3d d d d di i t s i t i i            As a 
result the correspondence to condition of uniform plastic deformation loss is obtained on the 
actual deformation diagram [13]:  
 

 1
3

d i
i d i





  . (15) 

 
Describing complete increments of the main deformations and their intensity, it is possible to 
proceed to the expression 3d d dt s i    . As a result the same expression is obtained for 
loss of stable plastic deformation as in 0.5  . But in this case, increment of deformation 
intensity is based on the diagram for cylinder at 0.5  .  
 
Let’s imagine some point on the diagram ,i i  . It is possible to found for it the corresponding 
coefficients of permanent expansion and static strength margin. Describing the coefficients of 
permanent expansion through calculation variations of volumes, we have: 

1
W W W Wр e eKPE W W W

   
   
  

. Substituting here found above changes of volumes, the first 

formula (16) is obtained. Instead of Wр  it was possible to use Wres  on formula (12) and 

W  can be described as W Wres e  . The result does not virtually change at that. The current 
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coefficient of strength margin is the relationship of the maximum pressure to pressure in i-th 
point n P PВi В i . Implying the index m  for values of corresponding maximum pressure, 
which was found using the condition of loss of uniform plastic deformation, after reduction, the 
second formula (16) is obtained.  
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        

. (16) 

In elastic area 0КPE   and at 0.5  : 
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The calculation current value of coefficient of permanent expansion at 0.5   is little bit larger 
than at 0.5  . As for the calculation current value of coefficient of strength margin the 
situation is vice verse. In general, when determining the current coefficient of strength margin, 
the Poisson’s coefficient has virtually no effect and it is possible to assumed that 0.5  . Error 
at that in comparison with calculation at 0.3   for example is negative and on absolute value 
makes less than 0.1%.  
 
From expressions (16) it can be seen that theoretical KPE  and nВi  do not depend on geometry 
parameters and volume of cylinder in thin-wall its presentation. They are determined by 
properties of actual deformation diagram and essence of cylinder shape with bottoms creating 
no edge effect. Nevertheless, the graphical dependence  n f KВi PE  has the same property. 
There are also all backgrounds for plotting the theoretical curves of other types of cylinders, for 
example, ball-shaped and composite.  
 
3. Experiment 
 
Let’s determine experimental dependence  n f KВi PE  for one cylinder. For this, the process 
of cylinder loading with internal pressure up to its fracture is divided on stages. The maximum 
pressure Pi  of each i-th stage exceeds the maximum pressure of previous (i-1)-th. Then, it resets 
to zero. Since, loading is carried out in stages, then complete and residual change of volume, 
necessary for determination of complete coefficient of permanent expansion, shall be taken 
considering the previous stages. In such a manner as if the loading took place at one time. Figure 
2 provides geometry interpreting of such loads.  
 
If measure the coefficient of residual permanent expansion on definition: 
     K W WPE PE TEi i i

   , at each i-th stage of cylinder loading with inner pressure where 
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change of volume is only related with this stage, then complete KPE  at loading at one time 
will not equal the sum of stage-by-stage coefficients, it will be less:  

 
 

 
 

1

1
1 1
1

i
W WPE PE iiW nPEK KPE PEi iW nTE W WTE PEi n


  

       


. (17) 

In general, if 1KPE   then  KPE i  can be much more than one. The formula for current 

coefficient of strength margin will remain the same, i.e. n P PВi В i . РВ  in this case is already 
taken from the test results.  
 
Experimental data presented below were obtained in testing the sample (cylinder) with 
conventional sign I1. The sample was made of 219×6 pipe from steel 20 with welded flat 
bottoms. Working and hydraulic test pressure was taken equal 10 and 15 MPa, respectively. 
The sample at initial stages of testing took place in WJ manufactured at E. O. Paton Electric 
Welding Institute, then, it was fractured already out of it. The video of testing process is given 
in [14]. Figure 2 provides the experimental dependencies of complete and residual volumetric 
expansions from pressure obtained in sample I1 testing in the water jacket.  

 

Figure 2. Experimental dependencies of complete and permanent volumetric expansions from pressure 
received in testing the sample I1 in water jacket:  

1 (1) – complete and residual change of volume determined on WJ; 2 – recalculated on formula (17) PEK  – on 
right scale; 3 – difference between complete and residual volume change; 4 – calculation dependence at 

0.5v  ; 0E  is the linear dependence plotted for elastic area before start of plastic deformations. Markers in 

bold P and Y designate pressure { }YP  and YP , and not bold are the calculation values corresponding PL  and 

02 .  

The pressures used below were designated in the following way, namely:  РY  is the pressure 

of yield beginning – cylinder volume stop returning into initial state; РY  is the yield pressure 
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determined as an inflection point of diagram of inner pressure loading; Pwat j  is the pressure, 

till which the sample was tested in WJ; РВ  is the maximum pressure carried by sample;  РВ  
is the fracture pressure.  
Values  WTE i

  and  WPE i
  for i-th stage of loading equal the distances (c-a) and (b-a), 

see Figure 2. It is clear that WEE  in these systems of coordinates is invariant.  ctg   value, 
see Figure 2, is the elastic volumetric compliance ( ). And this value rises with increase of 
plastic deformations, [9]. There is correspondence of   5,329ctgо о    for straight line Ео
, which on Figure 2 is given on the left, and, for comparison, on the right.   is constant in the 
field of elastic deformations. It insignificantly increases to 5.45 from proportional limit stress 
to yield point. Then, it demonstrates significant rise and to the end of testing in WJ it makes 
6.67, moreover the rise is virtually linear. The elastic change of volume can also be presented 
in the following way:  W P ctg PEE i i      .  

 

Figure 3. Diagram of deformation of steel 20 and relationship of deformation KPE for thin-wall cylinder by 
the example of I1 sample:  

K is the tension diagram of the sample cut out in circumferential direction; Ki is the actual deformation diagram 
plotted on K using dependencies (4); E is the elastic deformations; Od is the stresses as function form Odkvist’s 

parameter; C-C is the dependence  3d di i  ; 1, (1) is the complete and residual deformations on 

experimental data in accordance with formula (13); J is the values till which I1 sample was tested in WJ; the 
other designations correspond Figure 1.  
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Figure 3 provides the tension diagrams (K) for the sample cut out in circumferential direction 
of pipe (initial state) from which sample I1 was made, and plotted based on it using 
dependencies (4) the actual deformation diagram (Ki). Diagram (K) and, respectively, (Ki) are 
presented before deformations corresponding to tensile strength, i.e. start of neck formation. 
Since for cylinder t  in times more than z , then all the calculations were carried out on (Ki) 
diagram. It should be noted that the diagram in axial direction in contrast to circumferential has 
a yield segment and the calculations carried using it provide bad description of the test results.  
Analysis of formula (14) shows that the calculation pressure is linearly related with initial 
thickness of wall. Since actual thickness of wall has some spread characterized with thickness 
variation then a value being responsible for plastic deformations can be taken as so . This value, 
as a rule, is somewhat lower than average. In our calculations (see 4 Figure 2) nominal 
thickness, i.e. 6 mm, was taken as so .  
Figures 2 and 3c show that if intensity of stresses in cylinder wall reaches 02  level then the 
coefficient of permanent expansion amounts to sufficiently considerable values. Also is should 
be noted that a kink on the diagram of loading with internal pressure (see value РY  on Figure 
4b) takes place very close to this level. The calculation values corresponding to 02  on Figures 
4a and 4c virtually match with the value corresponding to РY .  
 

 

Figure 4. Dependence between pressure, coefficient of permanent expansion and current coefficient of 
strength margin, by the example of sample I1:  

a) dependence between pressure, coefficient of permanent expansion; b) envelope of displacement diagrams of 
sample loading with internal pressure in time; c) dependence between the coefficient of permanent expansion 

and current coefficient of strength margin.  
1 – experimental data; 2 – calculation data; 3 – ordinates of dependence 1 multiplied by 1.5; 4 – dependence for 

hydraulic receivers without object of testing.  
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In the area of large plastic deformations, deformations are proportional to the sample loading 
time, (the loading rate of the pump is close to constant). It is also interesting to note that the 
fracture pressure turned out to be less than the maximum pressure that the sample withstood, 
see figure 4b:  Р РВ В . This is in complete agreement with the provisions on loss of uniform 

plastic deformation. If the cylinder, for example, failures without reaching 0dP   condition, 
then this indicates that it has been «work» of some defect or loading rate is too big. After failure 
of I1 sample, the residual deformations of the perimeter in its central part made 0.082. If they 
are used for intensity evaluation, then its equals to 0.095 that is very close to C on Figure 3a.  
 
The experimental curve  n f KВi PE  is the dependence between the level of plastic 
deformations and cylinder limiting state. It is an integral curve accumulating the properties of 
material and design peculiarities of the cylinder. The design peculiarities are shape of the 
bottom and neck, level of out-of-roundness and variation in thickness, bending of the axis, 
allowable cavities etc. Nevertheless, it can be seen that it is close to theoretical curve, see Figure 
4c. Also it should be noted that theoretical curves plotted on diagrams I and II (see Figure 1b) 
match between themselves. However, they demonstrate sufficient difference at the initial stage 
from the experimental one, also matching between themselves for oxygen cylinders curves I 
and II. Such mismatch is apparently related with the fact that the tension samples were cut out 
from under shoes, and not to full extent characterize the properties of cylinder wall. The similar 
results have two other oxygen cylinders III and IV made of steel 35G.  
 
In the case of periodic check of the cylinders made on type of sample I1 using dependence 1 
(see Figure 4c) it is possible to determine the coefficient of static strength margin, but in relation 
to hydraulic test pressure. Since for sample I1 relationship 1.5Р РH W   then the ordinates of 
the dependencies 3 were obtained from ordinates of experimental dependency 1 by multiplying 
for 1.5 Dependence 3 can serve as a diagram of evaluation of the static strength margin on the 
coefficient of permanent expansion in the case of periodic check of the cylinders of this type.  
 
4. Conclusions  
 
The deformation theory of plasticity can be used in calculation of thin-wall cylinder. Accepting 
the Poisson’s ratio equal 0.5 the calculations are significantly simplified.  
Using the actual diagram of steel deformation, taken from uniaxial tension diagram, it is 
possible to get precise relationship of stresses and deformations in wall of the cylinder, at its 
loading with internal pressure up to limiting state (failure).  
Theoretical dependence between the coefficient of static strength margin and permanent 
expansion of one type cylinders does not depend on geometry parameters.  
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